The cultivation and propagation of *Sandersonia aurantiaca*

by Graham Duncan, Kirstenbosch

Sandersonia aurantiaca was discovered by Scottish journalist and amateur botanist John Sanderson in KwaZulu-Natal in 1851 and described by Sir William Hooker, director of Kew Gardens, in *Curtis' Botanical Magazine* in 1853. It is called ‘Christmas bells’ as it flowers at Christmas time in the wild, and the species name *aurantiaca* refers to the orange colouring of the flowers. *Sandersonia* is a deciduous, summer-growing genus of which *S. aurantiaca* is the sole representative and it belongs to the family Colchicaceae (formerly a part of the Liliaceae). It is endemic in South Africa and Swaziland and is closely related to *Gloriosa* and *Littonia*. Other southern African members of the Colchicaceae include *Androcymbium*, *Onixotis* (formerly *Dipidad*) and *Wurmbea*, while the largest genus, *Colchicum*, is found in the Mediterranean and...
western Asia. Sandersonia flowers can last up to two weeks in water, which has made it a much sought-after cut-flower around the world and it is particularly popular in Japan, where the lantern-like blooms hold great appeal.

Cultivation
Unlike its close relatives Gloriosa and Littonia, Sandersonia is not easily maintained in cultivation over an extended period, as the rootstock has a tendency to rot, particularly in the absence of a dry winter rest period. Conversely, Gloriosa rootstocks easily withstand garden irrigation during their winter dormant period provided they are grown in a very well drained sandy medium and they grow wonderfully well in the deep sandy soil of gardens on the Cape flats where wet winters are experienced. As Gloriosa rootstocks are often taken by molerats when grown out in the garden it is highly likely that those of Sandersonia would also be taken, another reason to grow it in containers rather than in the garden.

Sandersonia requires a well drained and well aerated, slightly acid growing medium containing plenty of organic matter such as equal part of finely sifted, well decomposed acid compost, vermiculite and coarse river-sand. I recommend the use of deep plastic pots with a diameter of 25 cm, but if terracotta pots are used, a wider diameter is necessary because of the more rapid drying of the growing medium. Place a layer of crocks over the drainage holes and follow this with a 2-3 cm layer of pure decomposed acid compost, then fill two thirds of the pot with the growing medium. Place a narrow stake about 80 cm long in the centre of the pot, carefully plant three to five mature Sandersonia rootstocks in a 1-2 cm layer of pure river sand and then fill the rest of the pot with another layer of the recommended growing medium. It is important to note that Sandersonia rootstocks should never be stored loose during the dormant period, but always be stored in dry soil, otherwise they soon desiccate and die. Always handle them with care as they are brittle and easily damaged. Containers should be placed in a sheltered area that gets morning sun and afternoon shade and not in situations where the container will overheat on very hot days. Water thoroughly after planting and once growth becomes visible I recommend a good watering once a week. Carefully tie the delicate growth stems to the stake every few weeks.

Mature sandersonias respond well to applications of slow-release fertilizer like Osmocote and seedlings can be fertilized every two weeks with a liquid feed such as Superphate which contains a growth stimulant. Sandersonias can be grown successfully in temperate climates but require the protection of the greenhouse in very cold areas. Pots of Sandersonia can be brought indoors while flowering and placed in good light where their blooms can be fully appreciated. If flowering stems are picked for the vase be sure to leave at least three leaves on the remaining stem in order to feed the developing new rootstock. Seed usually sets when plants are grown in well ventilated areas and hand pollination is not necessary.

Towards the end of summer, gradually decrease watering as the leaves begin to turn yellow, until the plants are completely dormant when the growing medium must be absolutely dry. Cut off the dried stems and store the pots in a cool dry place for winter.

Propagation
Sandersonia is mainly propagated by seed and by division of the mature rootstock, while micropropagation using in vitro techniques is a promising new method that has not yet been perfected. Unlike Gloriosa and Littonia, which are very easily propagated by seed, those of Sandersonia are notoriously erratic.

Propagation by seed is however still a recommended method for the enthusiastic home gardener, but beware, this long drawn out process is likely to test the patience of even the most resilient individual! Sow the seed in late spring or early summer in deep seed trays in a well drained medium that is rich organic matter, such as equal parts decomposed acid compost, vermiculite and river-sand. Cover the seeds with 3-5 mm and keep moist by regular watering with a fine rose. Place the seed trays in a semi-shaded position with good ventilation and, if necessary, protect them from heavy summer rain.

Germination is usually very erratic and even with fresh seed, usually a very low percentage will germinate during the first summer after sowing. With the onset of autumn allow the seed trays to gradually dry out and the few seedlings to go completely dormant over winter. Begin watering again in the late spring and during this second season lift the young rootstocks very carefully and plant them at a depth of 3-5 cm into permanent pots, again keeping the growing medium dry over the winter dormant period. Do not discard the old growing medium from the seed trays but continue to water it every summer for a further two to three years as the remaining seeds will continue to germinate.

Sandersonia aurantiaca imported from New Zealand on sale at the Fukukaei cut-flower market in Nagoya, central Japan.

Photos: G. Duncan.
According to Finnie and Van Staden (1996) several germination-breaking techniques are practised by commercial growers of *Sandersonia* in New Zealand. These include leaving the seeds in porous nets in a cold mountain stream for the winter, letting the ovaries degenerate into a ‘mush’ and sowing the resulting ‘mush’. They also report that using one or a combination of increased oxygen tension, scarification, stratification, endosperm damage or lipid mobilization significantly increases germination of *Sandersonia* seeds. *Sandersonia* seedlings usually bear flowers for the first time during their third season of growth.

Propagation by division of the adult *Sandersonia* roostock is a recommended method of increasing particular forms of this species which will be exactly true to type. The adult roostock is a V-shaped, stoloniferous corm consisting of two swollen, jointed lobes, with a single growth bud at the tip of each lobe. Wash the adult roostocks with water prior to division, taking extreme care not to damage the growth buds and cut through the centre of the joint with a sharp knife to produce two divisions, each with a piece of the joint as well as a lobe with a growth bud. The cut surface should be allowed to dry for a day or two, then dusted with a fungicide such as captan (e.g. Kaptan) and then planted. This process is best undertaken in late winter, just before active growth begins. During the summer growth period the old roostock shrivels up and dies while a new roostock is produced by the growth bud at the tip of one of the lobes. The growth bud at the tip of one of the lobes is always dominant over the growth bud at the tip of the other lobe and under normal circumstances the latter fails to develop. However, division of the mature roostock stimulates the other growth bud to develop as well. Division is a useful method of propagation as two flowering stems can be produced from one roostock during the same growth season in which the procedure is carried out.

Pest and diseases

Sandersonia is not particularly susceptible to pests or diseases. However, aphids may attack the new foliage in early summer but this seldom warrants the use of insecticides. Snout beetles occasionally cause damage to the stems and leaves from mid to late summer for which cypermethrin (e.g. Ripcord) can be used as a measure of control. Slugs and snails are partial to the foliage. The flowers can fall prey to the Botrytis fungus which can be controlled by thoroughly dusting the roostocks prior to planting with a 50:50 mix of captan (e.g. Kaptan) and iprodione (e.g. Rovral). Fungal rotting of the roostocks can be greatly reduced by ensuring that a well-aerated growing medium is used and by keeping them in dry soil during the winter dormant period. During the summer growing period a preventative drench of benomyl (e.g. Bniolate) can also be applied against fungal attack.

Proportive material of *Sandersonia* is not easily obtainable in South Africa but mail order companies that advertise in South African general gardening magazines do occasionally offer roostocks imported from New Zealand! Seeds will be made available to members of the Botanical Society of South Africa via the annual seed catalogue in the near future.

Further reading

BELLFLOWERS

Getting to know the South African bellflowers

by Christopher Cupido and Feruzah Conrad, Compton Herbarium, National Botanical Institute, Kirstenbosch

'And there with hysipal leaves and blooms Of darkened sapphire, richly swingng, The Bell-flowr nettle leaved illumes With azure light the woods; while bringing Around it's troops of insect things, With merry song and dancing wings' Anne Pratt

Many South African plant lovers are bound to have come across Canterbury bells (*Campanula medium*) which are generally available as seedings or seeds. This exotic bellflower, however, dominates the market at the expense of our indigenous bellflowers, which have great potential as garden plants. The bellflower or bluebell family, *Campanulaceae*, is widely distributed throughout the world especially in temperate and subtropical regions and consists of about fifty genera and more than 900 species. In South Africa the family contains mostly herbs (annual or perennial) and, rarely, small shrubs and there are ten genera of which seven (*Merciera*, *Microcodon*, *Rhigozyphyllum*, *Roella*, *Siphocodon*, *Theileria* and *Teschelia*) are endemic. Taxonomically the shape of the ovary and capsule separates the genera.

The leaves of the bellflowers are alternate, sometimes opposite, simple, and without stipules and the flowers are regular, bell-shaped, funnel-form or salverform (consisting of a corolla with a narrow tube and small spreading lobes) and bisexual. They are borne singly or more often in inflorescences. The large showy flowers are predominantly blue. The colour blue is particularly attractive to bees but there are a number